William's Picture

Hello, my name is

William Alexander

I’m an entrepreneur and scientist at the intersection of Biotechnology and Data Science. My work spans from data science to protein science, cell culture, flavor science, and chromatography.

This website is a summary of my experience and creations I have gathered throughout the years.

I Made: Caruso

One Software to Democratize Data Analysis & Collaboration

Caruso is a cloud-based platform designed to simplify advanced data analysis and collaboration. It's designed to transform raw, chaotic datasets into clean, structured insights ready for exploration, prediction, and decision-making. Whether your data is arriving in crusty old CSVs, polished Excel sheets, JSON payloads, or streaming from SQL databases, Caruso handles them all with elegance.

It was inspired from a script I had written a year ago, and I hope to expand this tool for everyone to use. It is a work in progress.

Demo:   🔗: www.carusodata.com     🗝️: supersecret_secretcode

The magic starts in the Data Processing Pipeline, where Caruso leads like a maestro

🎯 Data Upload & Integration

Upload your data to secure cloud storage—Caruso takes it from there. It inspects structure, checks quality, and merges multiple datasets into a unified whole, ready to be explored.

🧼 Data Cleaning & Transformation

Caruso cleans the house: fixes missing values, removes duplicates, and flags outliers. Then it reshapes your data—normalizing, encoding, and aggregating it to fit your model.

📊 Exploratory & Predictive Analysis

From basic data summaries to machine learning models, Caruso empowers both hindsight and foresight. Poke, prod, and visually inspect your data to uncover hidden patterns or unexpected anomalies.

🧑‍💻 Data Collaboration and Sharing

Science is a team sport: Generate real-time plots, annotate them with precision, start threaded discussions, and share dashboards with your team because insights are better when shared.

Caruso Automates
All These Steps Below

Caruso Diagram

🧠 Meet Caruso:
Your End-to-End Data Whisperer

🌟 The Inspiration

Let’s face it: most powerful data tools feel like they were designed by and for data sorcerers — offline, intimidating, and deeply siloed. That creates unnecessary friction at every turn:

  1. 😤 Frustration from clunky interfaces and steep learning curves
  2. 🚪 Gatekeeping where only a few with elite skills can participate
  3. 🧩 Critical Weakness in how data is analyzed, or worse, misunderstood

When the analytical engine breaks down, the consequences ripple outward: flawed insights, bad decisions, and a quiet hemorrhage of time and resources.

🎯 The Aspiration

We want to be for data what:

  1. Canva is for design
  2. Figma is for creative collaboration
  3. Notion is for knowledge management
  4. Robinhood is for retail investing

In short, Caruso is the accessibility layer for data-driven insights. We aspire to become the Caruso of data—effortless, elegant, and empowering.

Flavoromics = You Taste Something New, Can You Find Out What It Is?

The Art of Flavor Science through Chemical Compositions and Human Perceptions Analysis

Flavor is a Fusion of Taste and Smell

Ever tasted something unique and wondered what exactly makes it special? At Upside Foods, my work involves capturing those intriguing flavors and identifying their hidden chemical signatures. Using a sophisticated machine called GC-MS-O, which takes both technical skill and intuition to operate, I collect detailed aroma profiles containing over 10,000 data points per sample. After capturing this rich dataset, I use advanced algorithms and statistical modeling to pinpoint exactly which chemicals create the flavors you experience. It's flavor science made practical and exciting. Check out the diagram below to see how it works!

What I Do with Flavoromics

I ran the full stack of flavor discovery — from hypothesis to headspace. My work spanned experimental design, instrumental analysis, and building the computational architecture to connect chemical fingerprints with sensory realities. Think of me as both architect and detective — designing systems that decode flavor complexity and chasing down the molecular culprits behind what we taste.

I developed robust methodologies, wrangled high-dimensional datasets, and deployed advanced statistical and chemometric tools to uncover signal in the sensory noise. Beyond the lab, I built and led a high-performing research team — recruiting, mentoring, and scaling our capacity to deliver insights not just for R&D, but across regulatory, marketing, and product innovation functions.

How I Turn a Taste Profile into Chemical Insights

Flavoromics Diagram

What is Flavoromics?

Flavoromics is the science of decoding deliciousness — part chemistry, part statistics, and a dash of culinary sleuthing. It’s where analytical chemistry meets the sensory world, turning flavor into data and back again. We’re not just sniffing and sipping — we’re running GC-MS, LC-MS, and sometimes both before breakfast.

But flavor doesn’t play fair. It’s a complex symphony of volatile compounds, matrix effects, and human perception quirks. One molecule rarely tells the whole story. So, we don’t stop at raw data — we clean it, tame it, and run it through statistical models and machine learning pipelines until the signal emerges. These are our “flavor algorithms,” and they help us piece together why a strawberry tastes like a strawberry… or why a plant-based burger sometimes smells like gym socks.

Reflecting Back on This Experience

Looking back, Flavoromics pushed me to master the dual role of technical deep diver and strategic operator. Some days I was buried in mass spectra, chasing elusive esters through complex matrices. Other days I was coordinating cross-functional priorities, allocating analytical horsepower where it mattered most.

This experience sharpened my edge — as a scientist, yes, but also as a systems thinker and leader. It taught me how to translate complexity into clarity, how to build teams that can scale that clarity, and how to keep one foot in the chemistry and the other in the big-picture business of flavor.

Program Management in a Fast Moving World

To Build, Grow, Manage, & Maintain — and Repeat Everything Again.

I Enjoy Managing Things

I specialize in managing complex technical projects, delivering strategic initiatives from concept to completion. At Upside Foods, I built the pioneering Flavoromics Platform, effectively leading multidisciplinary teams, vendors, and stakeholders. By integrating strategic planning with precise stakeholder alignment, I ensured each milestone contributed meaningfully to our long-term objectives.

Throughout my career, efficiency and strategic budget management have been fundamental principles guiding my work. At Louis Dreyfus Company, I led the technology transfer of pilot plant protein purification processes, not only completing the project six months ahead of schedule but also saving approximately $400k in budgeted costs. I consistently seek out opportunities to streamline operations, reduce costs, and maximize resource utilization, enabling my teams to push boundaries in innovation while maintaining fiscal responsibility.

Key Achievements

  • Authored 4 patent applications in lab-grown meat flavor and protein industries.
  • Developed Upside Foods’ first Flavoromics Program from Scratch.
  • Spearheaded Yellow Pea Protein purification tech transfer at Louis Dreyfus Company — Completed 6 months early, saving $500k through efficient resource management.

I've Worked Here!

LDC Upside Berkeley

The Future Plan

Moving forward, my ambition is to lead larger, more sophisticated teams, aligning closely with organizational goals. I'm committed to fostering innovation, driving efficiency, and delivering impactful results that advance company interests. I'm motivated by the opportunity to tackle sophisticated technical challenges, enhance cross-functional collaboration, and cultivate environments where innovation thrives.

Engineer and Scale Anything with Process Engineering

A How-to Economically Process and Scale Legumes to Purified Proteins

Advancing Protein Purification Technologies for a Sustainable Plant-Based Future

At Louis Dreyfus Company (LDC), I led the technology transfer and scale-up of protein purification processes for yellow pea and cottonseed — two emerging sources of plant-based proteins. My work focused on maximizing yield, functionality, and cost-efficiency through process intensification and platform optimization. I leaned heavily on the pH–isoelectric precipitation (pH–IEP) method — a clever trick where proteins are first coaxed into solution at high pH, while starches, sugars, and fats stay stubbornly solid. Then, by dropping the pH to just the right spot (the protein’s isoelectric point), the proteins quietly come out of solution, ready for harvest. To refine things even further, I brought in size exclusion and ion exchange chromatography, plus a bit of air classification magic — all tailored to boost purity and dial in functional properties for downstream food and feed applications.

What I Do with Process Engineering

I design and optimize end-to-end bioprocesses that convert raw biological inputs into functional, commercially viable ingredients. My approach integrates molecular behavior with process design—selecting input parameters, defining critical control points, and engineering unit operations for yield, consistency, and performance. From pH–IEP tuning to optimize protein recovery to manipulating spray drying profiles for target functionality, each system is modeled, stress-tested, and aligned to product specs.

I specialize in building scalable, data-rich platforms with real-time analytics, in-line monitoring, and feedback control systems that ensure reproducibility from lab to manufacturing. I collaborate across R&D, operations, and commercial teams to translate process design into operational impact, ensuring each system not only meets technical benchmarks but drives measurable value across the product lifecycle.

How I've Purified Plant Materials to Proteins

Plant Protein PDE Diagram

From Seed to Protein Isolate: Engineering a Purification Process

Transforming yellow peas into >90% purity protein isolates isn’t a simple matter of “just extract it.” It’s a multi-variable engineering challenge, where everything — and I mean everything — starts with the seed. Cultivar selection and milling specs? Not side notes. They dictate solubility, extraction yield, and whether the downstream unit operations are going to hum or hiccup.

Once we’ve got the right flour, we roll into core extraction — usually pH–isoelectric precipitation (pH–IEP) — where proteins are coaxed into solution at alkaline pH, then gently persuaded to crash out at their isoelectric point. Parameters like pH, temperature, residence time, and flour-to-liquid ratio are control knobs on a process dialed for both molecular precision and commercial practicality.

Want higher purity? Bring in the big guns — ion exchange, membrane filtration, maybe even air classification if you’re feeling fancy. But don’t forget the trade-offs: increased cost, complexity, and potential downstream headaches. And speaking of downstream: concentration, washing, drying (usually spray drying) — this is where the process earns its margin or loses it. Final tweaks here can make or break functionality, shelf stability, and sensory performance.

Reflecting Back on This Experience

This project didn’t just make me a better scientist — it rewired me to think like a process engineer with a business agenda. Every choice, from pH shift dynamics to spray dryer config, came with implications for cost of goods, throughput, and commercial viability. I started asking different questions: Will this scale? Can it flex across product lines? How does this impact unit economics in a CPG environment vs. animal feed?

I built a sharp intuition for navigating technical trade-offs — how purity, functionality, and processing costs pull in different directions, and how to triangulate a path that serves both the product and the business model. This wasn’t about academic optimization — it was about finding the sweet spot between molecular performance and operational reality.

More importantly, it fueled my drive to build IP-generating, future-facing processes — solutions that serve not just today's markets, but tomorrow’s global protein challenges.

About Me

Educations & Certifications

Project Management Institute, 2025, in-progress — PMP®
University of California, Berkeley, 2021 — B.S. Chemistry
University of California, Berkeley, 2021 — Minor in Entrepreneurship

Work Experience

Project Manager & Scientist, Flavoromics, 2024 to 2025 — Upside Foods
Research Associate, R&D, 2021 to 2023 — Louis Dreyfus Company
Co-founder & CEO, 2021 to 2021 — Fermentum, a Material Upcycling Startup
Research Assistant, 2020 to 2021 — UC Berkeley, College of Chemistry

Patent Applications

2 in Lab-Grown Meat Flavor, 2024
2 in Plant Protein Process Optimization, 2022 & 2023

Skills

Strengths: Strategy Management, Program Management, Data Analytics
Coding: Python (Panda, NumPy, Plotly), C++ (Arduino), JS, MATLAB
Life Sciences: Chromatography (GCMS-O, LCMS, FPLC), Protein Characterization (Labchip GXII, SDS-PAGE), PhysioChemical Analysis (SEM, DSC, PSA, N2% Analyzer, RVA, Rheometer)

Hobbies

Finance : Long-term Investing, Increasing Credit Power
Tinkering: Robotics, 3D-Printing, Hacking things
Gaming: Strategy, Poker
Others: Photography, Espresso, Cooking